A GAUSSIAN MIXTURE MODEL-BASED SPEAKER RECOGNITION SYSTEM
نویسندگان
چکیده
منابع مشابه
Speaker Recognition System using Gaussian Mixture Model
In this paper,features for text-independent speaker recognition has been evaluated. Speaker identification from a set of templates and analyzing speaker recognition rate by extracting several key features like Mel Frequency Cepstral Coefficients [MFCC] from the speech signals of those persons by using the process of feature extraction using MATLAB2013 .These features are effectively captured us...
متن کاملA Gaussian Mixture Model Based Speech Recognition System Using Matlab
This paper aims at development and performance analysis of a speaker dependent speech recognition system using MATLAB®. The issues that were considered are 1) Can Matlab, be effectively used to complete the aforementioned task, 2) Accuracy of the Gaussian Mixture Model used for parametric modelling, 3) Performance analysis of the system, 4) Performance of the Gaussian Mixture Model as a paramet...
متن کاملFilter Bank Feature Extraction for Gaussian Mixture Model Speaker Recognition
Speaker Recognition is the task of identifying an individual from their voice. Typically this task is performed in two consecutive stages: feature extraction and classification. Using a Gaussian Mixture Model (GMM) classifier different filter-bank configurations were compared as feature extraction techniques for speaker recognition. The filter-banks were also compared to the popular Mel-Frequen...
متن کاملBayesian speaker recognition using Gaussian mixture model and laplace approximation
This paper presents a Bayesian approach for Gaussian mixture model (GMM)-based speaker identification. Some approaches evaluate the speaker score of a test speech utterance using a single data likelihood over the GMM learned by point estimation methods according to the maximum likelihood or maximum a posteriori criteria. In contrast, the Bayesian approach evaluates the score by using the expect...
متن کاملFuzzy Gaussian mixture models for speaker recognition
A fuzzy clustering based modification of Gaussian mixture models (GMMs) for speaker recognition is proposed. In this modification, fuzzy mixture weights are introduced by redefining the distances used in the fuzzy c-means (FCM) functionals. Their reestimation formulas are proved by minimising the FCM functionals. The experimental results show that the fuzzy GMMs can be used in speaker recogniti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Asian Journal of Pharmaceutical and Clinical Research
سال: 2017
ISSN: 2455-3891,0974-2441
DOI: 10.22159/ajpcr.2017.v10s1.19596